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Abstract

Experimental flow measurements are presented for a wing–body junction flow obtained using laser-Doppler velocimetry. Mean veloc-
ity and Reynolds stress data are used to calculate the complete transport-rate budgets of Reynolds stresses and turbulent kinetic energy.
The measurements were carried out in the Virginia Tech Boundary Layer Tunnel at a nominal air speed of 27.5 m/s around a NACA
0020 tail and 3:2 elliptical nose wing shape. Data are presented for a two-dimensional turbulent boundary layer (2DTBL), a strongly
skewed three-dimensional turbulent boundary layer (3DTBL), a location in the vicinity of a 3-D separation line, and around the center
of the vortex in the horse-shoe vortex that forms around the wing. Terms in the transport-rate equations were calculated also using the
measured triple order fluctuating velocity products. Results show that the pressure-diffusion approximated by Lumley [Lumley, J.L.,
1978. Computation modeling of turbulent flows. Adv. Appl. Mech. 18, 124–176] is an important term in the balance of v2, uv, and
vw stress budgets; there were distinct differences between the two-dimensional and three-dimensional turbulent boundary layer budgets.
Qualitative comparisons of experimental stress-transport-rate budgets to previous DNS results show a better agreement using the aniso-
tropic dissipation rate of Hallbäck et al. [Hallbäck, M., Groth, J., Johansson, A.V., 1990. An algebraic model for nonisotropic turbulent
dissipation rate in Reynolds stress closure, october. Phys. Fluids A 2 (10), 1859–1866].
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the present work a term-by-term investigation of the
transport-rate budgets is presented using experimental data
for a 2DTBL flow and for a complex wing–body junction
3DTBL flow (Ölc�men and Simpson, 1996b,c). Mean veloc-
ity, shear stress, triple order and fourth order product data
obtained at locations with different flow complexity are
used to calculate the terms in the Reynolds stress transport
equations (Launder et al., 1975) together with the pressure-
diffusion model of Lumley (1978) and the anisotropic dissi-
pation rate model of Hallbäck et al. (1990). Each term was
0142-727X/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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determined using only the experimental data in order to
present purely experimental values for the terms. This
work, therefore, provides a transport-rate budget analysis
that can be employed for Reynolds stress turbulence-mod-
eling in complex flows.

In a wing–body junction flow the approach boundary
layer on the wall upstream of the wing separates from the
wall due to the pressure gradients generated by the presence
of the wing, and rolls inwards to the wing/wall junction to
generate an unsteady vortical structure in the vicinity of
the nose of the wing (Fig. 1). The vortical structure forming
at the nose region is stretched around the wing to generate a
vortical structure named as the ‘‘horse-shoe vortex”. The
data used here are portion of a set of measurements made
in the horse-shoe vortex. Fig. 1 shows the schematic of
the wing–body junction and the measurement locations
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Nomenclature

Cp static pressure coefficient
(oCp/ox)FS static pressure coefficient gradient
Cij convection tensor
FA = arctan(W/U) flow angle

FGA ¼ arctan oW =oy
oU=oy

� �
flow-gradient angle

p fluctuating pressure component
PRij production tensor
PDij pressure-diffusion tensor
Reh Reynolds number based on momentum thick-

ness
SSA ¼ arctanðvw

uvÞ shear stress angle
t wing maximum thickness, t = 7.17 cm
TDij turbulent diffusion tensor
TKE ¼ k ¼ ðuiuiÞ=2 turbulent kinetic energy
Ue velocity magnitude at the boundary layer edge
Ui mean velocity components
uiuj Reynolds stress tensor, i = 1, 2, 3; j = 1, 2, 3
uiujuk triple velocity correlation tensor

Uþ ¼ U
us

non-dimensional mean velocity

us ¼
ffiffiffiffiffiffiffiffiffiffi
sw=q

p
skin-friction velocity

VDij viscous diffusion tensor
xTC, yTC, zTC tunnel coordinates

y+ = yus/m wall-law variable
bFS flow angle at the boundary layer edge
bWC wall-stress direction
dij Dirac delta function, dij = 1 if i = j, d ij = 0 if

i = j

d boundary layer thickness
eij viscous dissipation tensor
e = eii/2 dissipation of turbulent kinetic energy

h ¼
R1

0 1� U
U e

� �
U
U e

dy momentum thickness

m kinematic viscosity
q density
r standard deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�quvÞ2 þ ð�qvwÞ2

q
shear stress magnitude in the

flow
sw wall shear stress
Uij pressure–strain tensor
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used in the current paper. The wing used is a 3:2 elliptical
nosed, NACA 0020 tailed wing profile with maximum
thickness of 7.17 cm, chord length of 30 cm, and a height
of 22 cm. It was mounted perpendicular to the flat bottom
Fig. 1. Schematic view of the wing and the measurement locations, and
description of the coordinate systems. ( )22.4, wing-perpendicular coordi-
nates, ( )TC, tunnel coordinates.
surface of the Boundary Layer Tunnel with a (0.91 m �
0.254 m) rectangular cross section and 8 m long tunnel test
section. The nominal air speed was 27.5 m/sec resulting in a
Reh of the flow at 0.75 chord upstream of the wing equal to
5936. Conditions of the present flow field are well docu-
mented (Simpson, 1996). The approach flow conditions,
surface oil flows, and wall static pressure distribution were
previously presented (Ölc�men, 1990; Ölc�men and Simpson,
1995a; and Simpson, 2001). Ailinger (1990) measured the
surface skin-friction at selected locations using oil-film
interferometry.

Wing–body junction separated vortical flows have been
studied extensively by Simpson’s group at Virginia Tech
(Simpson, 1996, 2001; Devenport and Simpson, 1990,
1992; Shinpaugh and Simpson, 1995; Ölc�men, 1990; Ölc�-
men and Simpson, 1994, 1995a,b, 1996a,b,c,d,e; Fleming
et al., 1993, 1995; Ha and Simpson, 1993; Lewis et al.,
1994; Kim et al., 1991). This flow field has been used as a
computational test case, e.g. (Sung and Yang, 1998; Bon-
nin et al., 1996; Parneix et al., 1998; Deng and Visonneau,
1999; Apsley and Leschziner, 2001), using more than thir-
teen turbulence closure models ranging from an isotropic
eddy-viscosity model to versions of the k–e model and Rey-
nolds stress models. Results showed that all the codes
underpredicted the strength and size of the vortex around
the wing and near the nose region, as well as the TKE val-
ues within the separation vortex that forms near the nose
region. Conversely, the TKE values near the stagnation
region were overpredicted. These results were attributed
to the modeling of terms in Reynolds stress models indicat-
ing the need for further data in such complex flows.
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A recent paper by Ölc�men and Simpson (2006) and its
cited references discuss the details of the flow field with a
special emphasis on the flow field within the horse-shoe vor-
tex to the side of the wing. In that paper thirty eight closely
spaced velocity profiles were used to investigate the physics
within the horse-shoe vortex. Fig. 2 shows the mean velocity
magnitude and the secondary flow streamlines in the plane
perpendicular to the floor and passing through the 22.4�
line. The abscissa shows the distance from the wing where
the wing is located at s = 0, and the ordinate is logarithmi-
cally spaced. Fig. 2 shows that a large vortex is located in
the outer region and entrains the high speed free-stream
flow close to the wall, especially close to the wing. At
s � �4.2 cm the flow experiences a three-dimensional sepa-
ration where all the secondary streamlines merge towards a
point. At distances closer to the wing (s � �0.4 cm), the
flow direction is reversed (Fig. 2). The results showed that
the normal and shear stresses within the horse-shoe vortex
are an order of magnitude larger compared to values mea-
sured in a three-dimensional boundary layer just outside
the junction vortex. Bimodal histograms of the w fluctuat-
ing velocity were measured under the outer layer vortex
near the wall due to the time-dependent chaotic nature of
the horse-shoe vortex. It was also observed that the
shear–stress angle (SSA) highly lags the flow-gradient angle
(FGA), and the turbulence diffusion is highly altered due to
the presence of vortical structures.

Measurements used in this paper are the data obtained
at selected locations. The locations selected are Station 5,
Separation, and Vortex-core stations (Fig. 2). Plots of the
measured profiles in a plane perpendicular to the tunnel
floor encompassing the measurement station locations
show that the Separation and Vortex-core stations corre-
spond to the location where the 3DTBL goes through a
3-D separation and to the location where the center of
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Fig. 2. Velocity magnitude contours and secondary flow streamlines measure
figure.
the outer region vortex is located, respectively. Station 5
data were chosen since the data are for a 3DTBL just out-
side the horse-shoe vortex. Additional measurements made
on a line 3.175 mm downstream of the 22.4� line at these
selected locations were also used to calculate the axial gra-
dients of the variables. Two-dimensional TBL profiles were
obtained at the same Reynolds number flow without the
presence of the wing to serve as a baseline in comparison.

The data and the following discussions are presented in
tunnel coordinates throughout the paper. Fig. 1 shows the
coordinate system definitions. The ( )22.4� stands for the
wing-perpendicular coordinates and the ( )TC stands for
the tunnel coordinates. The y axis is perpendicular to the
floor. Positive xTC is along the tunnel axis looking down-
stream with its origin at the wing-floor intersection. Positive
x22.4� makes 22.4� counter-clockwise with respect to the
xTC. The z axes complete right-handed coordinate systems.

In the following sections the mean velocity and the Rey-
nolds stress profiles obtained at the selected stations are
discussed. This discussion is followed by the presentation
of the transport-rate budget equations and the discussion
of the approximations made to extract each term within
the transport-rate equations. Next, the transport-rate bud-
gets of the Reynolds stresses as well as the turbulent kinetic
energy obtained at the selected stations are comparatively
discussed.

2. Mean velocity and shear–stress data at selected stations

In this section a summary of the observations made about
the mean velocities and stresses obtained at the above men-
tioned stations are presented for completeness of the paper.
A more detailed discussion on the velocity field can be found
in papers by Ölc�men and Simpson (1995a,b, 1996d, 2006).
Measurement conditions are given in Table 1. Some length
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Table 1
Laser-doppler velocimeter locations and flow parameters

Stations X

(mm)
Z

(cm)
s/t Uref

(m/sec)
Ue

(m/sec)
bFS

(�)
bw

(�)
us

(m/sec)
v (m2/sec)
x1E05

(oCp/ox)FS

(1/m)
(oCp/oz)FS

(1/m)
Daily
pressure
(millibar)

Daily
temperature
(�C)

2-D – – – 27.4 27.2 0 0 0.98 1.67 0 0 941.2 24
Station 5 6.6 �7.47 �0.675 27.5 29.2 �7.71 �19.7 1.15 1.64 �6.25 �1.95 945.05 23
Separation 11.18 �6.35 �0.501 27.6 30.2 �10.38 �23.6 1.048 1.68 �8.92 �4.92 935.3 24
Vortex-core 15.75 �5.26 �0.336 27.5 32.3 �13.11 �29.47 1.33 1.67 �12.33 �7.93 941.3 24.8

Pressure coefficient gradients are calculated from the measured pressure distribution. Ue = velocity magnitude at the layer edge. The ( )FS stands for the
free-stream coordinates. Positive xFS is in the direction of the mean velocity direction at the edge of the boundary layer. Y axis is perpendicular to the floor
and, z axis completes a right-handed coordinate system.
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scales obtained at these stations and the uncertainties in the
measured quantities can be found in the report by Ölc�men
and Simpson (1996d). Skin-friction values used in non-
dimensionalizing the measured quantities were determined
in different fashions at different stations. The U/us mean
velocity profile at the 2-D station was used to calculate the
skin-friction coefficient at the wall using Coles law of the
wall (Uþ ¼ 1

0:41
lnðyþÞ þ 5, Coles, 1956) (Fig. 3). At Station

5 the skin-friction was measured using an oil-film interfer-
ometer (Ailinger, 1990). Skin-friction values at other sta-
tions were calculated using the measured mean velocity
and the theoretical variations of the mean velocity very near
the wall (Ölc�men and Simpson, 2006).
Fig. 3. U/us, V/us, W/us mean velocity at different stations in tunnel
2.1. Mean velocities

The non-dimensional velocity profiles show that (Fig. 3)
both at Station 5 and the Vortex-core station the U/us pro-
files have a greater velocity deficit above y+ � 50 in com-
parison to the 2-D velocity profile. At the Separation
station both the velocity gradients near the wall and non-
dimensional velocity attain higher values in comparison
to the 2-D profile. At the Vortex-core station in the region
y+ � 50–200 the U/us velocity gradient is approximately
zero indicating that the spanwise vorticity component is
practically zero in that zone.

The V/us velocities are not affected by the coordinate
system rotation (Fig. 3). At the 2-D station velocities
increase towards the layer edge. At Station 5, a peak forms
at y+ � 500. At the Separation and the Vortex-core sta-
tions V/us changes sign indicating the direction change
for the V component induced by the large-vortical struc-
ture (Ölc�men and Simpson, 2006); the magnitude is
increased towards the Vortex-core station.

The W/us at 2-D station is very close to zero as expected
(Fig. 3). The velocity magnitude peak increases and shifts
away from the wall, progressing towards the Vortex-core
station with increased three-dimensionality.
coordinates. d, 2-D; s, Station j, Separation station; h, Vortex-core
station.
2.2. Normal stresses

Normal stress distributions show that (Fig. 4) the pres-
ence of the large outer layer vortical structure results in
large velocity fluctuations, at the Vortex-core station.
While the u2=u2
s is twice that obtained at Station 5 at the

peak location, the v2=u2
s is more than seven times and the

w2=u2
s is more than six times compared to both 2-D and



Fig. 4. u2=u2
s ; v

2=u2
s ;w

2=u2
s normal stress components at different stations

in tunnel coordinates. d, 2-D; s, Station 5; j, Separation station; h,
Vortex-core station.

Fig. 5. uv=u2
s ; uw=u2

s ; vw=u2
s shear stress components at different stations in

tunnel coordinates. d, 2-D; s, Station 5; j, Separation station; h,
Vortex-core station.
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the Station 5 values. An increase in the u2=u2
s was observed

due to the bimodal variations observed in the lateral veloc-
ity. The v2=u2

s fluctuations were observed due to the mean-
dering and up and down movement of the outer layer
vortical structure (Ölc�men and Simpson, 2006). Profiles
also show that the Station 5 values are half that of the 2-
D station values near the wall (y+ � 20) for u2=u2

s , although
v2=u2

s and v2=u2
s are comparable to each other. At the Sep-

aration station while the u2=u2
s values are reduced in the
y+ � 15–150 range, the v2=u2
s profile shows an increase

between y+ � 50–1000 and v2=u2
s is doubled below

y+ � 1000. The u2=u2
s reduction near the wall at these sta-

tions is presumably due to the ejections by the spanwise
vortices (with the rotation opposite to that of the mean
flow) being disrupted due to the three-dimensionality of
the flow (Compton and Eaton, 1997; Itoh and Kobayashi,
2000), or due to the change in the structure of the near wall
flow (Flack, 1997).
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2.3. Shear stresses

At Station 5 and at the Separation station, uv=u2
s near

wall values below y+ � 300 and below y+ � 100 are lower
than the 2-D values, respectively (Fig. 5), presumably due
to the same reason why u2=u2

s is reduced. At the Separation
station above y+ � 100, the values are higher than the 2-D
case. Vortex-core station values peak at y+ � 400 with a
value �3 times higher than the 2-D values. At the Separa-
tion and the Vortex-core stations the flow behaves different
than a mildly skewed 3-D flow due to the effects of the
large-vortical structure on the flow.

The uw vw shear stresses in a 2-D TBL are nominally
zero. The location in the 3-D flow profiles where uw=u2

s is
zero shifts towards the wall, progressing towards the Vor-
tex-core station (Fig. 5). The positive peak value at the
Vortex-core station is an order of magnitude larger than
the Station 5 peak value. Above y+ � 500 the stress values
are very close to zero, showing that the uw=u2

s stress in this
region is not affected by the near wall structure.

Similarly, vw stresses are also close to zero above
y+ � 700 (Fig. 5). The positive and the negative peak val-
ues increase and the location where vw � 0 in the profile
is closer to the wall as the Vortex-core station is
approached.

3. Transport-rate equations of the stresses

In this section first the stress transport-rate equations
are introduced. Approximations made in determination
of each of the terms in these equations are discussed next.
The Reynolds stress transport equation with summation-
subscript notation can be written as (Launder et al., 1975)

Cij ¼ PRij þ Uij þ TDij þ PDij þ VDij � eij

where

Cij ¼
ouiuj

ot
þ Ul

ouiuj

oxl
convection

PRij ¼ � uiul
oUj

oxl
þ ujul

oUi

oxl

� �
production

Uij ¼
p
q

oui

oxj
þ ouj

oxi

� �
pressure–strain

TDij ¼ �
oðuiujulÞ

oxl
turbulent diffusion

PDij ¼ �
1

q

oðpujÞ
oxi

þ oðpuiÞ
oxj

� �
pressure-diffusion

VDij ¼ þm
o2uiuj

ox2
l

viscous diffusion

eij ¼ þ2m
oui

oxl

ouj

oxl
viscous dissipation

The subscripts denote the axes. Repeated dummy indices in
a multiplication denote summation. Note the minus sign in
front of eij.
In the individual stress transport equations the Uij, PDij,
eij and Uij, PDij, eij terms can not be directly determined
from the measured data. The terms involving the fluctuat-
ing pressure (Uij and PDij) require instantaneous spatial
flow field knowledge, since the flow history influences the
fluctuating pressure due to the mathematical nature of
the pressure fluctuations (Rotta, 1962). The Uij, PDij, Uij,
PDij, eij terms can not be measured currently, since the
measurement of pressure fluctuations and viscous dissipa-
tion within a flow at high Reynolds numbers with reason-
able accuracy very near a boundary is extremely difficult.
On the other hand, the rest of the terms in the individual
stress transport equations can be determined at a single
point.

In the current study PDij and Uij, PDij, eij were estimated
using existing models by Lumley (1978) and Hallbäck et al.
(1990). The pressure-strain term, Uij, PDij, eij was deter-
mined by the difference of terms in the equation. All the
other terms were determined by using either a Taylor series
expansion or fitting a function to the data and calculating
the derivatives of this function at that point of interest. The
uncertainty in each term of the stress balance equations
was obtained using the two values calculated for that indi-
vidual term using the two different data sets acquired at the
Separation station and using Chauvent’s criterion to calcu-
late the standard deviation. Uncertainties of 21–1 odds cal-
culated as ±2r are tabulated in Table 2.

3.1. Model for eij: Hallbäck et al. (1990) anisotropic

dissipation rate model

The fact that the limiting value of the dissipation rate at
the wall is not isotropic is noted by many researchers and
different algebraic models have been proposed in the liter-
ature. Tagawa et al. (1991) argued that simple algebraic
models could not capture the physics and developed a
new closure scheme which is not algebraic. The analysis
of eij near the wall using the fluctuation continuity equation
shows that (Launder and Reynolds, 1983; Lai and So,
1990; Mansour et al., 1988) the dissipation rate of
u2 and w2 vary linearly with y near the wall, reaching a
constant value at the wall. Also, the dissipation for v2 is
zero at the wall and varies as y2 near the wall. These wall
limits require an anisotropic dissipation rate tensor for
asymptotically correct modeling. In this study the effect
of an anisotropic dissipation approximation on the stress
transport budget is determined using the anisotropic dissi-
pation rate algebraic model of Hallbäck et al. (1990). Other
existing dissipation rate models such as the model of Lai
and So (1990) and Speziale and Gatski (1997) were tested
but were not used. They resulted in variations almost the
same as the isotropic dissipation rate variation or the near
wall dissipation rate values obtained below y+ = 50 did not
follow the existing direct-numerical simulation (DNS) solu-
tions obtained such as by Abe et al. (2001). The model by
Hallbäck et al. (1990) reportedly (Jakirlic and Hanjalic,
2002) poorly predicted the DNS solutions of Jakirlic



Table 2
21:1 odds + 2r uncertainties of stress-transport terms for the six stresses

Transport of term Convection Production Turbulent diffusion Pressure-diffusion Pressure-strain Viscous diffusion Dissipation rate

u2 0.0047 0.0086 0.0049 0.0009 0.011 0.00066 0.0073
0.0068 0.015 0.0091 0.0014 0.019 0.00137 0.0108

v2 0.0021 0.0011 0.0011 0.0023 0.0076 0.00036 0.0073
0.0011 0.0009 0.0009 0.0044 0.014 0.00074 0.0108

w2 0.0071 0.0029 0.0036 0.0008 0.0068 0.00022 0.0073
0.0071 0.0049 0.0048 0.0008 0.0094 0.00045 0.0108

uv 0.00132 0.0025 0.0016 0.0071 0.0089 0.00056
0.00144 0.0042 0.0022 0.0141 0.0162 0.00117

uw 0.0017 0.0047 0.0027 0.0005 0.0061 0.00067
0.0019 0.0077 0.0048 0.0005 0.0111 0.00014

vw 0.0014 0.0017 0.0011 0.0061 0.0077 0.00025
0.0010 0.0029 0.0010 0.0118 0.0140 0.00052

Uncertainties are non-dimensionalized by u4
s . Numbers in the second row show the uncertainties below yþ ¼ 100.
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(1997) and the Speziale and Gatski (1997) model was dis-
cussed as one of the most complete dissipation rate models
by Gatski (2004). Even so, the Hallbäck et al. model was
applied in the present work. This is because the near wall
variations of the transport terms are predicted much closer
in value to the DNS solutions than any other model,
including the isotropic dissipation rate model. Fig. 6 shows
the dissipation rate determined using the Hallbäck et al.
(1990) model and using the Speziale and Gatski (1997)
model, indicating that the latter model results in negative
dissipation rates near the wall for the v2 stress and larger
dissipation rates for w2 than that of u2 even in 2-D flows,
due to the nature of the approximations made in the model
development near wall.

Hallbäck et al. (1990) developed their explicit model
relating the anisotropies of the dissipation rate tensor to
the anisotropies of the Reynolds stress tensor using Lum-
Fig. 6. Anisotropic dissipation rate distribution calculated using, left: Hallbäc
stations, top: 2-D, bottom: Separation stations in tunnel coordinates. u2, d; v
ley’s invariant theory (1978). The general expression for
the dissipation rate anisotropies given by the invariant the-
ory was expanded using a power series of the Reynolds
stress anisotropies. A series of mathematical and physical
constraints were employed on this expansion to obtain
the dissipation rate anisotropy tensor eij

eij ¼
eij

e

� �
� 2

3
dij

and

eij ¼ 1þ a
1

2
II � 2

3

� �� �
aij � a aikakj �

1

3
IIdij

� �

where

aij �
uiuj

k

� �
� 2

3
dij; k ¼ 1

2
uiui; II ¼ aikaki; a ¼ 3

4

k et al. (1990) model right: Speziale and Gatski (1997) model at different
2, s; w2, j; uv, h; uw, N; vw, .; isotropic distribution, +.
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The model was successfully tested against numerical simu-
lations of homogeneous turbulence with success (Hallbäck
et al., 1990).

The turbulent kinetic energy (TKE) dissipation rate, e
required in dissipation calculations for the stresses was esti-
mated using the budget of the TKE transport equation.
The TKE transport equation can be expressed as half of
the sum of the transport equations for the normal stresses.
(Convection of TKE ¼ 1

2
ðC11 þ C22 þ C33Þ). The pressure-

strain term in the TKE transport equals zero since continu-
ity for incompressible flows requires that (oui

oxi
¼ 0), leaving

pressure-diffusion and viscous dissipation terms as the
unknowns in the balance of the equation. This allows one
to use an approximate model for one of the terms and
extract the other term from the balance of the TKE
transport. The pressure-diffusion term in the TKE trans-
port-rate equation was determined using Lumley’s approx-
imation, which is discussed below.

3.2. Model for PDij: Lumley’s (1978) pressure-diffusion

model

The pressure-diffusion term for a homogenous flow was
modeled by Lumley (1978) using a Gaussian model. Using
a moment generating function to produce an equivalent
scalar joint velocity density function and using Fourier
transforms for homogeneous stochastic fields (Lumley,
1970), Lumley obtained the following equation

1

q
puk ¼ �

1

5
ðukðu2 þ v2 þ w2Þ

Although the effect of the pressure-diffusion term was as-
sumed to be small in previous studies (Schwarz and Brad-
shaw, 1994) above y+ � 150, the pressure-diffusion term is
not necessarily small at lower y+ as shown by Launder and
Tselepidakis (1990) and Sumitani and Kasagi (1995).
Launder and Tselepidakis showed that pressure diffusion
has substantial importance in shaping the sublayer turbu-
lence structure, while DNS studies of Sumitani, and Kasagi
show that the pressure-diffusion terms for the normal and
shear stresses are as large as the pressure-strain term below
y+ � 10. In addition the pressure-diffusion term for the
TKE balance is practically zero, which is also approxi-
mately true for the pressure-diffusion terms estimated for
the TKE equation using Lumley’s approximation. In this
study the pressure-diffusion term was not neglected to
avoid large errors that would result in the individual pres-
sure-strain terms extracted from the data, especially near
the wall. The error introduced by using Lumley’s approxi-
mation is believed to be smaller than neglecting it. If the
pressure-diffusion term is neglected, the pressure-strain
term extracted also includes the pressure-diffusion term in
it. Current study also indicates that the pressure-diffusion
terms are small away from the wall above y+ � 100.

The constant multiplier (1/5) used in Lumley’s approach
was questioned by several researchers. Although Launder
and Tselepidakis (1990) used the same form of Lumley’s
equation, the constant multiplier used was 0.15, which
was not derived through a rigorous analysis. Large-eddy
simulations of Shao et al. (1990), of a shearless turbulent
mixing layer flow shows that the constant (1/5) may be an
overestimation. The constant multiplier was also discussed
in Shih et al. (1987), but a new number was not proposed.
In the present paper the constant multiplier is the same as
proposed by Lumley, as this is the best estimate to date.
4. Results and discussion

In this section the role and relative importance of each
term in the transport-rate equations both in 2-D and 3-D
flows are separately examined to aid future model develop-
ment. Experimentally determined TKE and the stress bud-
gets were compared to the 2-D turbulent channel flow DNS
solutions by Mansour et al. (1988) and Moser et al. (1999)
and 3-D DNS solutions of Moin et al. (1990) on a 3DTBL
generated with a sudden pressure gradient on a 2-D fully
developed plane channel flow using DNS. The results in
general show a good agreement between the budgets and
the DNS solutions, although the DNS solutions show
terms closer to zero at y+ � 150 where in the present data
the values are different than zero up to y+ � 1500.
4.1. Some observations on the transport-rate equations using

current data

In the current 2-D flow, while the V component of the
velocity is two orders of magnitude smaller than the U

component, the W component is zero. The main strain rate
is due to the U velocity component perpendicular to the
wall and the uw and vw shear stresses are zero due to no

cross flow. The largest production term, �uv oU
oy of u2 stress,

is much larger than the v2 production term �v2 oV
oy � uv oV

oy

and the largest w2 production term �v2 oV
oy � uv oV

oy is practi-

cally zero since uw; vw and oW/oy are zero. The v2 produc-
tion rate is approximately zero not only because oV

oy is small

but because v2

�uv � 1 in a 2-D boundary layer. Therefore the

TKE production in a 2-D flow is mainly due to the u2 pro-
duction. The largest uv production term component is

�v2 oU
oy .

In general, the trace of the pressure-strain tensor Uij is
zero due to the incompressible continuity equation
ðoui
oxi
¼ 0Þ, indicating that the sum of the pressure-strain

terms for the normal stress transport equations and, there-
fore, the pressure-strain term for the TKE transport equa-
tion is zero.

In a 3-D flow the existence of a W mean velocity gradient
is the main cause of the production of w2 normal stress
and uw and vw stresses, where the main production terms
for these stresses are ð�vw oW

oy Þ, ð�uv oW
oy � vw oU

oy Þ, and
ð�v2 oW

oy � vw oV
oy Þ, respectively. As these terms indicate, the

production of the vw stress together with the W mean veloc-
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ity gradient results in the production of the w2 and increases
the production of the uw stress; this indicates the impor-
tance of the vw stress in 3-D flows. Since the trace of the pres-
sure-strain term is zero also for the 3-D flows, the energy
extracted by the pressure-strain terms in the budgets of the
normal stresses are distributed among the normal stresses.

4.2. Turbulent kinetic energy transport-rate budgets

TKE budgets (Fig. 7) show that at every station the dis-
sipation rate and the production terms follow each other
Fig. 7. Turbulent kinetic energy transport budget at different stations, top to
tunnel coordinates. Symbols denote, d, convection (C); s, production (PR);
(PD); O, viscous diffusion (VD); �, dissipation (�).
closely above y+ � 40, and also above y+ � 100 and that
these are the major terms with other terms being closer
to zero. Both the production and the dissipation profiles
peak at around y+ � 15–20. Compared to the production
and dissipation terms, the pressure-diffusion is much smal-
ler throughout the layers, which shows that the dissipation
term calculated from the TKE budget balance using Lum-
ley’s approach for the pressure-diffusion term does not
have a substantial effect on the overall TKE budget. The
pressure-diffusion terms have opposite signs to viscous
diffusion and turbulent diffusion near the wall below
 

bottom: (a) 2-D, (b) Station 5, (c) Separation, (d) Vortex-core stations in
�, pressure-strain (u); h, turbulent diffusion (TD); N, pressure-diffusion
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y+ � 35, and each of these terms changes sign around
y+ � 10 at every station.

At the Separation station the TKE budget balance
shows that, except the convection terms all the term values
are more than twice those at Station 5 (Fig. 7). At the Vor-
tex-core while the production and dissipation values are
close to the values at the Separation station, the convec-
tion, turbulent diffusion, pressure-diffusion terms are much
increased. All the terms except the viscous diffusion are
Fig. 8. u2 normal stress transport budget at different stations top to bottom:
coordinates. Legend is same as Fig. 7.
important throughout the layers, and the effects of the
terms are not confined to y+ < 100.

Term-by-term comparison of the variations are similar
to the variations observed by Compton and Eaton (1997)
for an initially 2DTBL becoming a 3DTBL due to negoti-
ating a 308 corner while their free-stream velocity is about
12.5 m/s, Reh = 4000 for the approach flow, and the us

values are about less than half the values observed in the
current study for the 2-D case. They indicate that the
 

(a) 2-D, (b) Station 5, (c) Separation, (d) Vortex-core stations in tunnel
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production and the dissipation rates for the 2-D and the 3-
D flows are about the same (Fig. 16 of Compton and
Eaton, 1997) with slight increase in the terms for the 3-D
case, similar to the observations made in the current study
(Fig. 7 for the 2-D and Station 5 budgets). Bruns et al.
(1999) using their data obtained in an S shaped duct indi-
cate that (their Fig. 31) the production and the dissipation
are practically equal to each other above y+ = 40, similar
to the observations made here. The DNS calculations made
 

Fig. 9. v2 normal stress transport budget at different stations top to bottom:
coordinates. Legend is same as Fig. 7.
by Moin et al. (1990) of a planar channel flow with impul-
sively started transverse pressure gradient indicate that
near the wall at y+ = 10 the dissipation term is about 0.5
times the production term for the 2-D flow case, although
the dissipation rate becomes 1.5 times the production rate
with increased three-dimensionality. Similar results are
obtained by DNS solutions of Coleman et al. (2000) for
an initially fully developed and two-dimensional channel
flow subjected to mean strains thus emulating the effect
(a) 2-D, (b) Station 5, (c) Separation, (d) Vortex-core stations in tunnel
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of rapid changes of streamwise and spanwise pressure
gradients in three-dimensional boundary layers (their
Section 3.2).The observations made here indicate that the
TKE budget terms as calculated are similar to the varia-
tions observed in DNS calculations for the 2-D case
and similar to the other experimental data for 3-D flows;
the decrease in production and increase in dissipation
observed by DNS in 3-D flows is not observed in the
current study.
Fig. 10. v2 normal stress transport budget at different stations, top to bottom
coordinates. Legend is same as Fig. 7.
4.3. Stress transport-rate equation budgets

The transport-rate terms for the Reynolds stresses are
plotted in Figs. 8–13 for the u2; v2;w2; uv; uw, and the vw
stresses, respectively. At Station 5, Separation and Vor-
tex-core stations the distributions of the transport budget
terms decrease progressively more steeply approaching
zero values compared to the 2-D flow station at lower y+

locations for the u2;w2, and uv stresses. This may be due
 

: (a) 2-D, (b) Station 5, (c) Separation, (d) Vortex-core stations in tunnel



 

Fig. 11. uv shear stress transport budget at different stations, top to bottom: (a) 2-D, (b) Station 5, (c) Separation, (d) Vortex-core stations in tunnel
coordinates. Legend is same as Fig. 7.
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to the three-dimensionality of the flow stabilizing the near
wall boundary layer as observed by Flack (1997) in the
study of a 30.8 bend flow showing a decreased number of
vortical ejection events in 3DTBL regions. At the Vortex-
core station observations made here are accompanied with
the effects of the outer region vortex which produces sub-
stantial terms.

The production of the u2 and w2 stresses are comparable
to each other in 3-D flows with their peak at y+ � 20.
While the production of w2 increase with increased three-
dimensionality and is positive throughout the layers, the
u2 production does not show a trend. The v2 production
becomes less than zero above y+ � 30 (Fig. 9), while the
uv (Fig. 11), and uw (Fig. 12) production terms are less than
zero throughout the layers with their peak at y+ � 20 and
y+ � 15, respectively. The vw (Fig. 13) production peaks
at y+ � 20 with a positive sign, however it becomes nega-
tive over y+ � 100, presumably responding to the change



 

Fig. 12. uw shear stress transport budget at different stations, top to bottom: (a) Station 5, (b) Separation, (c) Vortex-core stations in tunnel coordinates.
Legend is same as Fig. 7.
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in sign of the W mean velocity gradient, �vw oW
oy . For v2, the

mainly pressure-strain term is the term that aids in energiz-
ing v2. While the magnitude of the uv production rate is
about the same for the 2-D and the 3-D flows, the produc-
tion rate increases for the uw and vw stresses at 3-D flow
stations.

The dissipation rate for the u2 and the w2 stresses
increase with increased three-dimensionality, while the v2

stress dissipation rate first decreases at Station 5 but
increases at the Separation and the Vortex stations.
Although the dissipation rates for the shear stresses are
close to zero, they are not zero due to the anisotropic nat-
ure of the dissipation rate equation used (Hallbäck et al.,
1990). The dissipation rate of uv and vw stresses is about
half of the v2 terms. For 3-D flow stations the dissipation
rate distributions are approximately isotropic above
y+.100. However for 2-D flow it becomes isotropic above
y+.350. While the v2 and uv dissipation rates are zero, the
u2 and the w2 dissipation rates are different than zero at
the wall for 2-D flows, with their magnitudes being equal
to the viscous diffusion at the wall (Bernard and Wallace,
2002, pp. 126–130).

The pressure-diffusion term has a large affect on shaping
the transport rate budgets near the wall. The relative mag-
nitude of the pressure-diffusion and pressure-strain terms
with respect to that of the production term increases with
increased three-dimensionality for v2; uv, and vw, while
the pressure-diffusion and pressure-strain term trends tend
to be opposed to each other indicating that the effect of the
terms is mostly to cancel one another. The pressure-diffu-
sion terms are practically zero for all the other stresses at
every station. The major pressure-diffusion terms for the
v2; uv, and vw, stresses are oðpuÞ

oy ; oðpvÞ
oy ; oðpwÞ

oy , respectively.
Increased values of non-dimensional pressure-diffusion
indicate that the differences between the correlation values
in the layers are increasing with increasing three-dimen-
sionality of the flow.

The pressure-strain term shows the correlation between
the pressure fluctuations and the fluctuating velocity gradi-
ents and is important in shaping the near wall structure at



 

Fig. 13. vw shear stress transport budget at different stations, top to bottom: (a) Station 5, (b) Separation, (c) Vortex-core stations in tunnel coordinates.
Legend is same as Fig. 7.
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every station for every stress. At the 2-D station, while the
pressure-strain term is negative throughout the layer for
the u2 components, it is positive for the w2 component
and changes sign to become positive around y+ = 20 for
the v2 component. With increasing three-dimensionality
the pressure-strain value, U11, (for the u2 stress) becomes
positive indicating that the positive pressure fluctuations
occur more together with the positive ou/ox gradients;
U33, pressure-strain value (for the w2 stress) becomes nega-
tive indicating that the opposite signed pressure and ow/oz
fluctuating velocity gradients occur more together in 3-D
flows. Since the sum of the pressure-strain terms in the
TKE transport equation is zero, negative pressure-strain
term for a normal stress must be compensated by the
sum of the pressure-strain terms for the other normal stres-
ses. At the Separation and the Vortex-core stations the sign
of the u2 pressure-strain changes to positive, with the larg-
est magnitude occurring at the Vortex-core station. At
these stations the v2 strain rate becomes negative between
y+ = 10 and 30 and the w2 pressure-strain is negative
throughout the layers resulting in positive u2 pressure-
strain term; this energizes u2 by extracting energy from
other normal stresses. Positive values below y+ = 10 and
above y+ = 30 in the v2 transport equations indicate the
fact that w2 also energizes v2 at the 3-D stations. For the
shear stress values the pressure-strain values are increased
with increased three-dimensionality; this indicates that
the fluctuating velocity component gradients along the
off-axis directions (such as u gradient in the y or z direc-
tions) are becoming better correlated with the pressure fluc-
tuations. The pressure-strain term peak value magnitude
increases with increased three-dimensionality for all the
shear stresses.

Turbulent diffusion shows the negative of the spatial
variation of the work rate done by the stresses in the direc-
tion of the flow. The data indicates that the turbulent dif-
fusion term is different than zero for all the stresses at
every station especially near the wall, with both positive
and negative values observed. Turbulent diffusion effects
are observed to be significant below y+ � 40, for all the
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stations except the Vortex-core station, where the effects
are observed throughout the layers for the normal stresses.
Turbulent diffusion is positive below y+ � 10 and negative
up to y+ � 40 for u2;w2; vw, while the signs are the opposite
for the uv and uw stresses at the 2-D, Station 5 and the
Separation stations. The peak value magnitude of the tur-
bulent diffusion increases with increased three-dimension-
ality, except for the v2 stress.

The viscous diffusion for a stress is the sum of the second
derivatives of a stress in the x, y, and z directions multiplied
by the kinematic viscosity. Viscous diffusion terms are
observed to be significant below y+ � 40 for u2;w2 and
the uw stresses, but approximately zero for the other stress
transport equations at all stations.

The magnitude of the convection term is observed to
decrease at Station 5 and Separation stations compared
to the 2-D values for u2; v2;w2 stresses, while the peak loca-
tion shifts away from the wall. For the Vortex station, near
wall positive peak is accompanied by a negative peak away
from the wall for these normal stresses. For the uv; uw, and
vw stresses the values are fairly close to zero. If the convec-
tion term is zero it denotes that the variation of the quan-
tity following a mean flow streamline is zero. The
convection term must be kept, as small as it may be, for
variation of the stresses.
5. Conclusions

Experimental velocity data obtained in a wing/body
junction flow at selected stations and in a 2DTBL are used
to study the transport-rate budgets of the normal and shear
stresses. While the pressure-diffusion term was approxi-
mated by Lumley, 1978(’s model), the dissipation rate
was approximated by Hallbäck et al. model (1990) and
the pressure-strain term was determined from the balance
of the transport-rate equations. Other terms in the trans-
port equations were calculated using the experimental data.
Some conclusions that can be made from the current study
are as follows:

(1) The production of w2 increases with increased three-
dimensionality; the u2 production does not show a
trend. The production term that is about zero for v2

in the 2-D flow becomes negative above y+ � 30 with
increased three-dimensionality. While the magnitude
of the uv production rate is about the same for the
2-D and the 3-D flows, the production rate increases
for the uw, and vw stresses with increased three-
dimensionality.

(2) While the dissipation rates for u2 and w2 increase, the
v2 dissipation rate decreases with increased three-
dimensionality. The dissipation rate distributions
are approximately isotropic above y+ � 100 for the
3-D flow stations, and above y+ � 350 for the 2-D
flow. The dissipation rates for the shear stresses are
close to zero.
(3) The pressure-diffusion term largely affects the trans-
port-rate budget of the v2 normal stress and the uv
and vw shear stresses. The magnitude of the term
increases with increased three-dimensionality. The
effect of the term is negligible for the transport-rate
budget of the TKE and other stresses.

(4) Although the u2 pressure-strain term is negative in the
2DTBL, its magnitude reduces with increased three-
dimensionality and it is positive at the Separation
and Vortex-core stations. On the other hand the posi-
tive w2 pressure-strain term observed in the 2DTBL
reduces at 3-D stations and its sign becomes negative
at the Separation and Vortex-core stations. While the
energy extracted by the u2 pressure-strain term ener-
gizes w2 and v2 for most of the layer in the 2DTBL,
at the Separation and the Vortex-core stations the
w2 pressure-strain term energizes u2 and v2 through
most of the layers. The pressure-strain term magni-
tude for the uv; uw; vw stresses increases with
increased three-dimensionality.
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